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Preamble
How the brain processes information, where and how it stores them, 
and how it retrieves from memory as and when required, are some of 
the basic questions one is naturally curious about. In spite of neuro-
science being an old discipline and the brain having been mapped ex-
tensively, one hardly knows much about the physiological mechanisms 
underlying such basic functions of the brain involving learning and mem-
ory. One has begun to develop some understanding on this account in 
the past few decades due to the efforts by psychologists (e.g. Donald 
Hebb [1]) and formal approaches by mathematicians, physicists, engi-
neers, and cognitive scientists employing mathematical and cognitive 
models for certain brain functions. The theoretical approach not only 
gives crucial insight into how the brain functions, but also helps in de-
signing and planning experiments that would otherwise be difficult and 
expensive, and in devising ways of processing and storing non-cognitive 
information. The latter may pertain to information technology. It is our 
contention that the mathematical and cognitive models of brain pro-
cesses should give ideas to construct algorithms to handle numerous 
non-cognitive problems.

A Hypothesis
In this short communication, we summarize one such theoretical ap-
proach we have pursued for some time. We have hypothesized since 
2000 [2] that in many situations the brain might be functioning in a math-
ematical manner in that it might be using mathematical functions and 
transformations (which are otherwise well known to mathematicians and 
physicists) to perform certain cognitive tasks. A natural question that will 
arise then is “how would an untrained brain know about these functions 
and transformations?” To this end, we go on to conjecture that the brain 
might be hard-wired to do such mathematical functions and transfor-
mations, and that these competencies might have been acquired by the 
brain in the course of evolution while mathematicians and physicists 
have been only reinventing them. Apparently, a section of modern phi-
losophers also believes so.

The Crux
Let us start with the basic question: how do we learn? — On the basis of 
certain experimental observations, a psychologist Donald Hebb [1] put 
forth a hypothesis that the synaptic efficacies, i.e. the nature (whether 
excitatory or inhibitory) and strength of synaptic connections between 
numerous neurons in the brain, change as and when an information is 
registered. The synapses have plastic character, i.e. the modification in 

their efficacies stay, sometimes for short durations and sometimes over 
longer periods, and it is through this ongoing process of modifications 
that we learn and store information in synapses. 

Electrical impulses are constantly exchanged by the huge number 
of neurons (≈1011) when the brain is active. Suppose, when information 
comes to be recorded, the neurons are already individually potentiated 
(or inhibited) to certain levels, which may be a base level or a level reached 
in the course of assimilating earlier information. The level of potentiation 
or inhibition will typically vary from one neuron to the other. The new in-
formation triggers them and some of them that might have been already 
near the threshold of firing might fire, i.e. send out electrical impulses, 
while the others remain quiescent. These impulses are received by oth-
er neurons via synapses, which, depending on their chemical character, 
whether excitatory or inhibitory, will excite or depress the neurons that 
are the recipients of the impulses. A neuron receives such excitatory and 
inhibitory inputs from a large number of pre-synaptic neurons and adds 
them linearly. If the net effect of the combined input makes the recipient 
neuron cross its threshold, which is pre-assigned to it by nature, then it 
fires an electrical impulse that is received by a large number of neurons 
via synapses. Note that the signal or impulse sent out by a neuron is 
replicated into as many of them as the number of neurons this particular 
neuron is synaptically connected with.

Thus, we see that the neurons might be already programmed to add 
linearly. The brain also knows how to multiply as an input from a pre-syn-
aptic neuron goes to a post-synaptic neuron weighted by the synaptic 
efficacy of the synapse connecting them. The combined capabilities of 
neurons to add, and the neuron-synapse duos to multiply enable the 
neuronal network to form memories and the Hebbian plasticity enables 
them to be stored in the synapses. We further propose that when these 
competencies are extended over a collection of neurons and synapses, 
they enable them to also perform mathematical operations of higher lev-
els like ‘orthogonalization’ and ‘Fourier transformation’. We have studied 
these two mathematical operations, in particular, to propose that the 
brain might employ them respectively to discriminate between informa-
tion [2,3] and make the long-term memory robust against trauma [4]. 
When we categorize information, we compare entities and isolate simi-
larities and differences between them. To acquire this capability, we ar-
gue, the brain employs the mathematics involved in orthogonalization. 
Orthogonalization is a mathematical transformation that converts a 
given set of vectors into a set of mutually perpendicular or orthogonal 
vectors. So how is it connected with the brain and its capability to discrim-
inate between information to categorize them? To address this question, 
we will first prepare the background.
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The Mathematical Framework
As mentioned above, 1011 odd neurons are all the time busy exchanging 
electrical impulses or ‘action potentials’ via approximately 1015 synaptic 
connections, which are either excitatory or inhibitory in nature and can 
have a range of values for their strengths. In this dynamical scenario, 
when information comes to be recorded, it triggers the neural activities, 
as a result of which some neurons fire while others are unable to. This 
pattern of firing and quiescent neurons is taken to correspond to the 
incoming information. And, in this picture, in which the information is 
spread out over a large network of neurons and synapses, an informa-
tion is represented by an N-dimensional vector whose N components are 
+1 or –1, where +1 represents a firing neuron and –1 represents a qui-
escent neuron. Thus, an information, which can be an object, a smell or 
anything perceived through the sense organs, is designated by an N-di-
mensional vector, say ξ  = {+1,–1,–1,+1,–1,+1,+1,–1,–1,...}. The N compo-
nents in a network of N neurons represent features of the object, while 
+1 or –1 indicates yes or no for a feature to be found. How the vector ξ  is 
stored in the network of neurons and synapses was prescribed by Hebb, 
who observed that the strength of a synapse depends on the activities of 
the neurons on either end of it. For instance, if both the neurons are ac-
tive, then the synapse can become stronger than when one is active and 
the other is not. Even when both the neurons are inactive, the synapse 
can be construed as becoming stronger in a relative sense.

Mathematically, we can represent the Hebbian rule as

 

Jij i j

p

=
=

∑ξ ξm m

m 1
 (1)

Here ξ m
i  represents the ith component of the vector ξ µ , i.e. activity on the 

ith neuron of the mth input pattern. The Jij represents the strength of the 
synapse between neurons i and j and it depends on the activities on neu-
rons i and j in the pattern m. Note that, as Hebb’s hypothesis postulated, 
the Jij changes cumulatively every time a new pattern m is inscribed.

A highly connected network of binary neurons undergoing interac-
tion of the type in eqn. (1) can be represented by the following Hamiltoni-
an, or total energy function.
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The minima of this Hamiltonian will represent stable states of the net-
work. In representing our network by this Hamiltonian, we have taken 
our cue from the physics system called spin glass [5], in which the mag-
netic atoms having spins either up or down interact in a manner similar 
to eqn. (1) over all ranges of separation and the system settles down in 
an exponentially large number of stable or minimum energy states, each 
being a random configuration of up and down spins.

This model offers a useful scenario and a mathematical framework 
that can be adapted to model memory – each pattern of up and down 
spins that minimizes the Hamiltonian can be visualized as a memory of 
an entity represented by a pattern (or array) of firing and non-firing neu-
rons.

This model of memory originally conceived by Hopfield [6] gives use-
ful insight into the working of memory as a stable state of the model 
brain, but it suffers from a serious constraint — if the number of stored 
memories exceeds 0.14 × N, N being the number of neurons in the brain, 
then a memory blackout begins to set in, i.e. retrieval from memory de-
teriorates rapidly and soon nothing that is stored in the synapses can be 
recalled [7-9]. 

The prescription for retrieval/recall is

 sgn h sgni i( )ν νξ= ( )  (3)

where the symbol ‘sgn’ represents the sign of hi
ν  or ξ ν

i , and hi
ν  gives the 

local field potential on neuron i in the pattern ν , which is a combined re-
sult of projections of activities on all the neurons on to the neuron i ; each 

projection from a neuron is weighted with the efficacy Jij of the synapse 
connecting that neuron with i. This is given by
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If the condition (3) is satisfied for a pattern ξ ν , then we consider the latter 
to be retrieved. We can then say that ξ ν  is one of the memories stored 
by the network.

While 0.14*N is quite large, since N is of the order of 1011, what is 
unrealistic about the blackout is that the model brain breaks down when 
it is overloaded. The reason for this shortcoming is simple to understand. 
Even though the patterns being stored as memories are generated ran-
domly, they inevitably have non-zero overlaps between themselves, i.e. 
the dot-product between any two vectors, ξ µ ’s, will be non-zero. This 
leads to noise due to cross-talks (in eqn. (4)) between ξ ν , which is pre-
sented for retrieval from memory, and all the other ξ µ ’s stored in the 
memory. This can be seen easily by substituting for Jij from eqn. (1) and 
expanding the summation in eqn. (4). The noise builds up as more and 
more vectors are lodged in the memory, and at one stage the signal, ξ ν

, submerges in the noise, and retrieval, as per eqns. (3) and (4), becomes 
impossible.

It should be noted that in order to categorize or classify information, 
we need to search for similarities among the given entities. That is, their 
vectors should actually overlap with each other. But, then, as we have 
seen above, that would lead to the serious problem of memory blackout. 
So, how do we resolve this dichotomy?

Orthogonalization
We have proposed that before lodging in the memory, the brain can 
orthogonalize the vector corresponding to incoming information with 
respect to all the vectors in the memory store [2]. Orthogonalization is 
a mathematical transformation that converts a given set of (linearly in-
dependent) vectors into a set of mutually perpendicular vectors [10]. It 
is our hypothesis that the brain stores in the synapses (in the usual Heb-
bian manner, as in eqn. (1)) the orthogonalized vectors rather than the 
original or the raw vectors ξ µ ’s. This drastically new hypothesis enables 
the brain to store ‘similarities’ and ‘differences’ of the new incoming infor-
mation with those in the memory store rather than the full information 
contained in the incoming vector [11].

The orthogonalization strategy also provides the system with some 
economy on storage [2]. For instance, if we consider two objects (only for 
simplicity), one is stored and the second one has been orthogonalized 
with respect to the first to prepare it to be imprinted, we will find that 
similarities are stored with greater emphasis (or weight) in case the two 
objects are very different from each other; on the other hand, if the two 
objects happen to be very similar, then the model brain will store the 
similarities with smaller amplitude than the differences between them, 
which we find are fewer in number. We can say that this model brain 
has an additional and cognitively appealing capability of paying greater 
attention to similarities in very different objects and to differences in very 
similar objects – i.e. greater attention is paid to whichever is lesser be-
tween similarities and differences.

While the immediate effect of orthogonalization is that the noise is 
eliminated and consequently the memory capacity jumps from 0.14N to 
N, but more importantly, as a big bonus, we find that the orthogonaliza-
tion bestows the model brain with significant cognitive capabilities ex-
plained above, besides providing it with a built-in feature of economy, 
which is generally ubiquitous in nature [2,3].

Error Correction, Stability and All That 
The neuronal network we have described also has the feature of con-
tent addressability. It can retrieve an inscribed ξ ν  when presented with 
something similar to it, that is, the network can ‘associate’ other patterns 
(outside the set of learnt ones) with those in the stored memories and 
recall the latter individually. In fact, the imprinted or learnt patterns act 
as attractors, and associated with each imprinted pattern there is a ba-
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sin of attraction. An arbitrarily chosen pattern in a basin of attraction, if 
presented for association, will converge to the attractor, which is at the 
bottom of the basin. We can treat the set of patterns inside a basin of 
attraction as belonging to a group or category with the attractor at the 
bottom of the basin being the representative of the group. Alternatively, 
we can say that the network acts as an error corrector – patterns inside a 
basin differ from the imprinted pattern or the attractor on a few sites; if 
we view the mismatches as errors, then the convergence of such errone-
ous patterns to the imprinted pattern on presentation for retrieval would 
amount to error correction.

We are investigating a number of issues related with basin of at-
traction and stability of memories with and without orthogonalization 
that are of relevance to cognition. This work is currently in progress and 
should be ready for publication quite soon.

We are also investigating the use of orthogonalization schemes due 
to Löwdin [12-14] that are very different from that of Gram-Schmidt and 
have the potential of giving insight into forms of memories other than 
the associative memory. The Gram-Schmidt scheme orthogonalizes in a 
sequential manner, which is relevant to the processes like learning of 
languages. On the other hand, the Löwdin schemes are democratic in 
nature, because they take all vectors and orthogonalize them all together 
in one go. As new vectors are added, the entire lot of orthogonalized set 
gets modified. They are thus expected to help us understand episodal 
and semantic memories. In a preliminary study, we have also found that 
the orthogonalization schemes help us in addressing questions pertain-
ing to lodging of words in mental lexicon and their retrieval. For instance, 
we have attempted a study on the age-old problem in grammar – wheth-
er words are stored in their full glory or as word parts.

We have also studied another vital question pertaining to a common 
observation that due to an accident or due to ageing we may lose short-
term memories, but almost always we retain old memories, i.e. long-term 
memory is robust against trauma and ageing, which involve destruction 
or decay of neurons and synapses. We have proposed that the long-term 
memory may have a holographic character so that even if a part of the 
constituent units is destroyed or obfuscated, the surviving units can put 
together the whole memory like in the case of an image of a hologram. 
In mathematical terms, this would imply that the brain might possess the 
ability to Fourier transform the information when sending the memories 
formed in Hippocampus to the long-term memory areas in Cortex. We 
have adapted Fourier transformation into our model for learning and 
memory and demonstrated how full memories can be constructed even 
if some synapses, and along with them some neurons, are destroyed (see 
ref. [4] for full discussion).

Discussion and Conclusion
The above results are indeed derived from rigorous calculations, mathe-
matical as well as computational, the details of which are not given here 
but can be found in references [2-4,11]. In order to drive home a partic-
ular point to a mixed readership of wide cross-section, we have kept the 
description largely to a qualitative level by minimizing on mathematical 
expressions. We are working together with experimentalists to substan-
tiate our hypotheses and conjectures through experiments. We are be-
ginning to find favorable evidences. This work is currently in progress in 
collaboration with Dr. DJ Parker at Cambridge University.

The ideas and hypotheses expressed here are in initial stages of de-
velopment. A lot of work, including experimental, needs to go in before the 
hypotheses become theories to explain the mechanisms of certain cogni-
tive functions. It should be appreciated that the ideas and mathematical 
frameworks developed in one particular branch of science can be useful to 
understand the phenomena happening in another completely unrelated 
area of science. The present set of works highlights one such example.

Our discussion is more or less in generic terms without reference to 
any particular area of the brain. However, adaptation to any specific part 
of the brain engaged in a specific task may not be a problem. In a broad 
sense, we know that the neuronal networks in different parts of the brain 
process different types of information and that many of these networks 
may be interacting with each other. The nature of long-range interac-

tions, for instance the special kind in spin-glasses [5], can give insights 
into the interactions between the networks and in turn help in under-
standing the functional networks that are typically revealed in functional 
imaging [15,16]. Application of the orthogonalization, particularly Löw-
din’s ‘canonical’ [10,14], can give the intensity or magnitude of activities in 
the various connected networks in a graded manner.

Finally, it is being recognized that glial cells play a role in memory 
formation [17]. We have not touched up on it as yet, but it should be in-
teresting and instructive to integrate glial cells with the attractor neuroal 
networks. This will involve a lot of out-of-the-box thinking and throw up 
major challenges to theoretical neuroscientists. It must be appreciated 
that the discipline of theoretical or formal neuroscience calls for collab-
oration between experts trained to do neurosciences, including experi-
mentalists, on one hand, and formal scientists like physicists and com-
puter scientists on the other.
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